Xyloketal B Exhibits Its Antioxidant Activity through Induction of HO-1 in Vascular Endothelial Cells and Zebrafish
نویسندگان
چکیده
We previously reported that a novel marine compound, xyloketal B, has strong antioxidative actions in different models of cardiovascular diseases. Induction of heme oxygenase-1 (HO-1), an important endogenous antioxidant enzyme, has been considered as a potential therapeutic strategy for cardiovascular diseases. We here investigated whether xyloketal B exhibits its antioxidant activity through induction of HO-1. In human umbilical vein endothelial cells (HUVECs), xyloketal B significantly induced HO-1 gene expression and translocation of the nuclear factor-erythroid 2-related factor 2 (Nrf-2) in a concentration- and time-dependent manner. The protection of xyloketal B against angiotensin II-induced apoptosis and reactive oxygen species (ROS) production could be abrogated by the HO-1 specific inhibitor, tin protoporphyrin-IX (SnPP). Consistently, the suppressive effects of xyloketal B on NADPH oxidase activity could be reversed by SnPP in zebrafish embryos. In addition, xyloketal B induced Akt and Erk1/2 phosphorylation in a concentration- and time-dependent manner. Furthermore, PI3K inhibitor LY294002 and Erk1/2 inhibitor U0126 suppressed the induction of HO-1 and translocation of Nrf-2 by xyloketal B, whereas P38 inhibitor SB203580 did not. In conclusion, xyloketal B can induce HO-1 expression via PI3K/Akt/Nrf-2 pathways, and the induction of HO-1 is mainly responsible for the antioxidant and antiapoptotic actions of xyloketal B.
منابع مشابه
Xyloketal B Attenuates Atherosclerotic Plaque Formation and Endothelial Dysfunction in Apolipoprotein E Deficient Mice
Our previous studies demonstrated that xyloketal B, a novel marine compound with a unique chemical structure, has strong antioxidant actions and can protect against endothelial injury in different cell types cultured in vitro and model organisms in vivo. The oxidative endothelial dysfunction and decrease in nitric oxide (NO) bioavailability are critical for the development of atherosclerotic le...
متن کاملXyloketal B Suppresses Glioblastoma Cell Proliferation and Migration in Vitro through Inhibiting TRPM7-Regulated PI3K/Akt and MEK/ERK Signaling Pathways
Glioblastoma, the most common and aggressive type of brain tumors, has devastatingly proliferative and invasive characteristics. The need for finding a novel and specific drug target is urgent as the current approaches have limited therapeutic effects in treating glioblastoma. Xyloketal B is a marine compound obtained from mangrove fungus Xylaria sp. (No. 2508) from the South China Sea, and has...
متن کاملPhysiological role of adenosine and its receptors in tissue hypoxia-induced
It is well known that the metabolic factors play an important role in the regulation of angiogenesis. Increased metabolic activity leads to decreased oxygen levels and causes tissue hypoxia. Hypoxia starts different signals to stimulate angiogenesis and promotes oxygen delivery to tissues. It has been suggested that released adenosine from hypoxic tissues plays a vital role in angiogenesis. ...
متن کاملNovel Insights into the Vasoprotective Role of Heme Oxygenase-1
Cardiovascular risk factors contribute to enhanced oxidative stress which leads to endothelial dysfunction. These events trigger platelet activation and their interaction with leukocytes and endothelial cells, thus contributing to the induction of chronic inflammatory processes at the vascular wall and to the development of atherosclerotic lesions and atherothrombosis. In this scenario, endogen...
متن کاملVASCULAR BIOLOGY Heme oxygenase-1 expression enhances vascular endothelial resistance to complement-mediated injury through induction of decay-accelerating factor: a role for increased bilirubin and ferritin
Catabolism of free heme by heme oxygenase-1 (HO-1) generates carbon monoxide, biliverdin, and free iron (Fe). These end-products are responsible for much of the biologic activity of HO-1, including anti-inflammatory, antiapoptotic, antiproliferative, and antioxidant effects. We have identified an additional cytoprotective action, the regulation of complement activation, mediated via induction o...
متن کامل